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Portfolio insurance strategies are used on both the institutional and the retail side of the asset manage-
ment industry. While standard utility theory struggles to provide an explanation, this study justifies the
popularity of portfolio insurance strategies in a behavioral finance context. We run Monte Carlo simula-
tions as well as historical simulations for popular portfolio insurance strategies and benchmark strategies
in order to evaluate the outcomes using cumulative prospect theory. Our simulation results indicate that
most portfolio insurance strategies are the preferred investment strategy for a prospect theory investor.
Moreover, the analysis provides insights into how portfolio insurance products should be designed and
structured to meet the preferences of prospect theory investors as accurately as possible.
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1. Introduction pricing model. He concludes that the costs of such a strategy can
Portfolio insurance strategies gained momentum with the
introduction of synthetic put strategies in the early 1980s by
Rubinstein and Leland (1981). Strategies that provide protection
against losses, while preserving some upward potential, seem to
be attractive for a wide range of investors. On the one hand,
institutional investors often use portfolio insurance strategies in
tailor-made solutions to protect the stock market exposure of their
portfolios against large losses. On the other hand, there are many
retail products that guarantee private investors downside protec-
tion. In fact, the turbulent stock market behavior in the recent past
has demonstrated that portfolio insurance strategies help to avoid
significant losses. However, the opportunity costs in terms of lim-
ited participation from positive stock market returns are high in
normal and good states. Given that taking over systematic risk is
rewarded with an equity risk premium, the question arises
whether portfolio insurance strategies can ever make sense
(Dreher, 1988).

Several theoretical studies examine the optimality of portfolio
insurance strategies. For example, Dybvig (1988) analyzes the effi-
ciency of a simple stop-loss strategy with the payoff distribution
ll rights reserved.
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be substantial and should not be ignored by practitioners. This re-
sult is due to the fact that a stop-loss strategy (like other dynamic
portfolio strategies) is incompletely diversified over time.
Benninga and Blume (1985) document that the optimality of a
portfolio insurance strategy depends on the investor’s utility func-
tion. They argue that portfolio insurance with put options is only
utility maximizing in incomplete markets (e.g., when an investor
is prohibited from investing in the risk-free asset). Black and Perold
(1992) prove that the constant proportion portfolio insurance
(CPPI) strategy with unconstrained borrowing is utility maximiz-
ing only for a HARA utility function. However, borrowing con-
straints will be imposed in the asset management practice. In
this case, the utility maximizing property holds under additional
and very restrictive assumptions. Overall, it seems that the unbro-
ken popularity of portfolio strategies cannot be justified based on
standard utility theory.

In another strand of the literature, simulation methods are used
to analyze the properties of portfolio insurance strategies. Compar-
ing different protection strategies, Benninga (1990) documents
that the simple stop-loss strategy tends to dominate more sophis-
ticated portfolio insurance strategies in terms of both the expected
terminal wealth and the Sharpe-ratio. Bird et al. (1990) report that
standard portfolio insurance strategies are robust to a variety of
market conditions, including stock market crashes. More recently,
Do (2002) uses simulation analysis to compare the synthetic put
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1 In order to mitigate this deficiency, modified versions of the stop-loss strategy
have been developed (e.g., Bird et al. (1988) and Bookstaber’s (1985) multi-point
stop-loss strategy).
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strategy with the CPPI strategy. Although he claims that neither
strategy can be justified based on either a loss minimization or a
gain participation point of view, the CPPI strategy seems to domi-
nate in terms of floor protection and the costs of insurance. The
simulation results in Cesari and Cremonini (2003) indicate that
the relative performance of portfolio insurance strategies depends
on the market phase. For example, using a variety of performance
measures (e.g., the downside deviation and the Sortino ratio), they
report a dominant role of the CPPI strategy against all other port-
folio insurance strategies in bear and sideway markets. Finally,
Annaert et al. (2009) use the concept of stochastic dominance to
compare portfolio insurance strategies with buy-and-hold strate-
gies. They cannot identify a dominance relationship between port-
folio insurance strategies and buy-and-hold benchmarks. Although
portfolio insurance strategies yield lower returns than the bench-
mark strategies, Annaert et al. (2009) conclude that their accompa-
nying lower risk compensates sufficiently to make them attractive
alternatives at least for some investors.

Presumably, the positive framework of behavioral finance offers
an explanation for the widespread popularity of portfolio insur-
ance strategies. Experimental evidence indicates that investors
are more sensitive to losses than to gains (loss aversion). Moreover,
individuals have a tendency to overweight extreme, but unlikely
events (e.g., very large, but rare losses). Accordingly, Shefrin and
Statman (1993) and Kahneman and Riepe (1998) argue that invest-
ment advisors should consider strategies that limit the downside
potential while retaining some of the possible upside gains. In fact,
generating a kinked return profile in a systematic and rules-based
way is the main property of any portfolio insurance strategy.

In this study, we examine the question whether the popularity
of portfolio insurance strategies can be explained using elements of
behavioral finance. This is the novel path that our analysis takes.
Recognizing that the optimality of portfolio insurance strategies
depends on an investor’s utility function, we analyze the return
distribution of portfolio insurance strategies together with simple
benchmark strategies using Tversky and Kahneman’s (1992)
cumulative prospect theory. In order to assess the attractiveness
of portfolio insurance strategies from the perspective of a prospect
theory investor, we start with Monte Carlo simulations and assume
that continuously compounded stock market returns follow a Geo-
metric Brownian motion. By calibrating the mean and volatility
parameters of the return generating process, Monte Carlo simula-
tions enable us to investigate the impact of changing stock market
scenarios on cumulative prospect values. In a second step, we use
German data and conduct historical simulations on a rolling win-
dows basis. Historical simulation preserves the time series proper-
ties of the original return data. Both simulation approaches are
applied on a step-by-step basis, where each module incorporates
an additional feature of prospect theory. This procedure enables
us to determine which components of prospect theory are respon-
sible for the attractiveness of portfolio insurance strategies.

Our findings indicate that the stop-loss strategy, the synthetic
put strategy, and the CPPI strategy provide returns that are more
attractive for a prospect theory investor than the returns from var-
ious benchmark strategies. This main result is robust and shows up
in different scenarios. However, it is not observable for the time
invariant portfolio protection (TIPP) strategy, which is a variant
of the CPPI strategy and exhibits a lower potential to participate
from upward market movements compared to the other insurance
strategies. Moreover, our results suggest that the cumulative pros-
pect values of the synthetic put strategy are not very sensitive to
estimation errors in the stock market volatility. In the spirit of She-
frin and Statman (1993) and Breuer and Perst (2007), our study
also presents hints how a portfolio insurance product should be
designed in order to meet a prospect theory investor’s preferences
as accurately as possible. Sensitivity analyses for all portfolio insur-
ance strategies suggest that a higher protection level is more
attractive for prospect theory investors than a lower one despite
its reduced return potential. Moreover, given a maximum accept-
able overnight or gap risk, a CPPI strategy should be implemented
as aggressively as possible.

The remainder of this paper is structured as follows: Section 2
provides a discussion of the portfolio insurance strategies we use
in our empirical analysis. Section 3 introduces the main elements
of cumulative prospect theory. Section 4 discusses our results from
Monte Carlo simulations and historical simulations. Section 5 ad-
dresses the question how a portfolio insurance product should be
designed from the standpoint of a prospect theory investor. Sec-
tion 6 concludes and discusses further implications for the asset
management practice.
2. Alternative strategies to provide portfolio insurance

The main idea of portfolio insurance strategies is to offer
participation from positive stock market movements, while simul-
taneously limiting potential losses to a pre-specified level or floor
(e.g., a maximum loss of 0%, 5%, or 10% per year). Accordingly,
the resulting return distribution becomes asymmetric and right-
skewed. Various investment strategies that provide loss protection
are suggested in the literature. Prominent examples (1) the stop-
loss portfolio insurance strategy, (2) the synthetic put portfolio
insurance strategy, (3) the constant proportion portfolio insurance
(CPPI) strategy, and (4) the time invariant portfolio protection
(TIPP) strategy. In this section, we provide a brief description of
these strategies.

2.1. Stop-loss portfolio insurance strategy

The simplest way to protect a risky portfolio against losses is
the stop-loss portfolio insurance strategy. In this strategy, the
investor initially invests his total wealth (W0) in the risky asset.
This position is maintained as long as the market value of the risky
position (Wt) exceeds the net present value (NPV) of the floor (FT),
which represents the minimum accepted portfolio value:

Wt > NPVðFTÞ: ð1Þ

If the market value of the portfolio reaches or drops below the dis-
counted floor, hence if Wt 6 NPV(FT), all of the risky portfolio hold-
ings are sold and invested in the risk-free asset. This position is
held until the end of the investment horizon. If the interim portfo-
lio value did not drop below NPV(FT), the investor’s final wealth
will never be lower than FT. The stop-loss portfolio insurance strat-
egy is easy to implement, it does not depend on any specific
assumptions, and it also does not require estimating any model
parameters (e.g., the stock market volatility). A disadvantage of
this strategy is that the investor can no longer participate from
any upward market movement once the portfolio has been shifted
in the risk-free asset.1

2.2. Synthetic put portfolio insurance strategy

A second popular portfolio insurance strategy is the synthetic
put strategy (Rubinstein and Leland, 1981). While a protective
put strategy requires the availability of an adequate and liquid
put option with the appropriate strike price and the desired time
to maturity (Figlewski et al., 1993), the synthetic put strategy
can be implemented in a fairly flexible manner. In its purest form



2 There exist other portfolio insurance strategies, which do not strictly guarantee a
specific portfolio value (floor) but only with a specified probability. Strategies based
on the Value-at-Risk (VaR) are discussed in Jiang et al. (2009), Herold et al. (2005) and
Herold et al. (2007).
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the latter strategy uses the Black and Scholes (1973) option pricing
formula to create a continuously adjusted synthetic European put
option on the risky asset. Combining the purchase of a risky asset
with the purchase of a put option on this asset (stock) is equivalent
to buying a continuously-adjusted portfolio, which is a combina-
tion of the risky asset and the risk-free asset (cash). Pricing the
put option with the Black and Scholes (1973) option pricing for-
mula, the value of a portfolio that consists of a stock S plus a put
P can be calculated as:

Sþ P ¼ S� S � Nð�d1Þ þ K � e�rT Nð�d2Þ
¼ S � ½1� Nð�d1Þ� þ K � e�rT Nð�d2Þ
¼ S � Nðd1Þ þ K � e�rT Nð�d2Þ; ð2Þ

where K is the strike price, r the risk-free rate, and T the time to
maturity. N(�) is the standard normal cumulative distribution func-
tion with d1 and d2 defined as:

d1 ¼
lnðS=KÞ þ ðr þ 0:5r2ÞT

r
ffiffiffi
T
p ð3aÞ

and

d2 ¼ d1 � r
ffiffiffi
T
p

; ð3bÞ

where r is the standard deviation of risky asset returns. In order to
calculate the investment in the risky asset in the replicating portfo-
lio, the delta of the portfolio in Eq. (2) is given as:

@ðSþ PÞ
@S

¼ Nðd1Þ: ð4Þ

The delta in Eq. (4) defines how much of the risky asset must be
purchased in order to replicate the portfolio consisting of the risky
asset and the put option. Multiplying the delta with the price of the
risky asset S and dividing by the value of the portfolio in Eq. (2), the
percentage allocations (w) in the risky asset and the risk-free asset
are:

wrisky ¼
S � Nðd1Þ

S � Nðd1Þ þ K � e�rT � Nð�d2Þ
ð5aÞ

and

wrisk-free ¼ 1�wrisky: ð5bÞ

At the inception of a period, an investor who follows a synthetic put
portfolio insurance strategy will invest in a portfolio of the risky as-
set and the risk-free bond. This strategy requires increasing
(decreasing) the proportion of the risky asset in the portfolio if
the price of the risky asset increases (decreases). In order to main-
tain a desired protection level, the strike price K must be set such
that the following relationship holds:

K ¼ F
W0
� ðSþ PðKÞÞ; ð6Þ

where the ratio (F/W0) is the percentage floor. The value of the put
option P(K) depends on the strike price itself, and hence the solution
of Eq. (6) must be determined iteratively. The put’s exercise price K
will be higher than the floor because the put itself is costly.

Given the assumptions of the Black and Scholes (1973) frame-
work, such as the absence of transaction costs, the portfolio must
be readjusted on a continuous basis in order to maintain the de-
sired protection level. However, transaction costs will incur with
each portfolio adjustment, and hence a higher adjustment fre-
quency leads to higher transaction costs. In order to incorporate
this transaction costs effect, Leland (1985) and Boyle and Vorst
(1992) suggest using the synthetic put portfolio insurance strategy
with a modified volatility estimator:
rLeland ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffi
2
p

r
� k

r
ffiffiffiffiffiffi
Dt
p

s
ð7aÞ

rBoyle=Vorst ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2 � k

r
ffiffiffiffiffiffi
Dt
p

s
; ð7bÞ

where k captures the round-trip transaction costs, and Dt denotes
the length of the rebalancing interval. With these volatility adjust-
ments, transaction costs as well as the corresponding rebalancing
frequency are taken into account.

However, two crucial issues arise in a synthetic put portfolio
insurance strategy. First, a synthetic put strategy is based on the
assumptions of the Black and Scholes (1973) option pricing model.
Among other assumptions, the model suggests that stock returns
are normally distributed following a Geometric Brownian motion.
Second, the synthetic put portfolio insurance strategy requires esti-
mating the volatility of the asset whose value is to be secured (Bird
et al., 1990; Zhu and Kavee, 1988). Accordingly, the quality of the
protection strongly depends on the precision of this estimate
(Rendleman and O’Brien, 1990).
2.3. Constant proportion portfolio insurance strategy

An alternative approach to portfolio insurance is the constant
proportion portfolio insurance (CPPI), originally suggested by Black
and Jones (1987, 1988). Because the CPPI strategy is not based on
option pricing theory, many of the associated problems can be mit-
igated, and hence the practical implementation of the CPPI strategy
is straightforward. Starting point is an investor’s risk capital at time
t, called the ‘‘cushion’’. The current cushion (Ct) represents the dif-
ference between the current wealth at time t (Wt) and the net pres-
ent value (NPV) of the floor (FT), hence:

Ct ¼Wt � NPVðFTÞ: ð8Þ

The exposure to the risky asset at time t, denoted as et, is calculated
by multiplying this cushion with the multiplier, labeled m:

et ¼ m � Ct: ð9Þ

The remainder of the investor’s wealth is invested in the risk-free
asset. In principle, the multiplier m can be set to any value, but
its choice has a strong economic meaning. The inverse of the mul-
tiplier (1/m) represents the maximum sudden loss in the risky asset
that may occur such that the cushion is not fully depleted and the
portfolio value does not fall below the discounted floor. For exam-
ple, with a multiplier of m = 5, the risky asset can lose at most
20% (1/5 = 0.20) without violating the floor. However, when a sud-
den loss of over 20% occurs, the value of the portfolio falls below the
promised minimum value (‘‘gambler’s ruin’’). In commercial appli-
cations, it is necessary to permanently control the optimal exposure
to the risky asset, and hence portfolio shifts need to be executed
immediately. In most cases a trading filter is used, implying that
only significant up and down market movements cause shifts in
the portfolio structure and irrelevant side market movements are
filtered out. Although the maintenance of the floor will be con-
trolled on an intraday basis, the risk still exists over night when
the portfolio manager cannot react immediately to extreme market
losses (overnight risk or gap risk). In spite of this small residual risk,
which can partly be controlled by choosing an appropriate multi-
plier m, the CPPI strategy can be classified as an absolute protection
strategy with a strictly lower limit for the portfolio value.2
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An unconstrained CPPI strategy can lead to short positions in
the risk-free asset (when the price of the risky asset is high) or in
the risky asset (when the price of the risky asset is low). In com-
mercial applications the CPPI strategy is usually implemented such
that the holding of the risky asset varies between 0% and 100% of
the investment sum. This implies that short-sales and leverage
are ruled out. In this case, Eq. (9) is modified as follows (Benninga,
1990; Do, 2002; Annaert et al., 2009):
et ¼max½minðm � Ct;WtÞ;0�: ð10Þ
The constrained CPPI strategy can be implemented by shifting be-
tween the stock market and cash as dictated by Eq. (10). Therefore,
in our simulations we use this rule to implement the CPPI strategy
in each simulation path.

All portfolio insurance strategies pursue the goal to secure the
initial wealth up to a pre-specified protection level or floor. How-
ever, Estep and Kritzman (1988) argue that investors will not only
be interested in a protection of their initial wealth, but also in the
protection of any interim capital gains. In order to achieve this
additional effect, they suggest a modification of the CPPI strategy,
which they call the ‘‘time invariant portfolio protection’’ (TIPP)
strategy. While the CPPI strategy operates with a fixed floor (which
is the initial wealth multiplied by the percentage floor), the floor of
the TIPP strategy is ratchet up if the value of the portfolio increases.
Specifically, after choosing the initial floor and the multiplier, this
strategy requires the following steps (Estep and Kritzman, 1988):

1. Calculation of the actual portfolio value (stocks plus cash).
2. Multiplication of this portfolio value by the floor percentage.
3. If the result in step 2 is greater than the previous floor, this level

becomes the new floor; otherwise the old floor is kept.
4. Application of the CPPI strategy as dictated by Eqs. (8)–(10).

While the principle idea behind the TIPP strategy seems attrac-
tive, Choie and Seff (1989) argue that this strategy suffers from a
major shortcoming. As in the traditional CPPI strategy, the TIPP
strategy transfers all holdings of the risky asset in an irreversible
manner to the risk-free asset once the floor has been reached.
Accordingly, the TIPP strategy cannot participate from any subse-
quent upward market movements. However, because of the con-
tinuous ‘‘ratcheting up’’ of the floor to the highest portfolio value,
the likelihood that the portfolio value reaches or falls below the
prevailing floor increases, and hence the TIPP strategy will more of-
ten end up fully invested in the risk-free asset. The overall net ef-
fect on the mean return of the TIPP strategy compared to the
standard CPPI strategy is not clear ex ante, but our simulation
framework is able to provide detailed insights.
3 Moreover, Berkelaar and Kouwenberg (2009) show that loss aversion is time-
varying. In very good states loss-averse investors become gradually less risk-averse as
wealth rises above their reference point, pushing up equity prices. In contrast, when
wealth drops below the reference point investors become risk-seeking and demand
for stocks increases, eventually leading to a forced sell-off and a stock market bust in
bad states.

4 Ingersoll (2008) discusses shortcomings of the single-parameter probability
weighting function suggested by Tversky and Kahneman (1992).
3. Prospect theory versus expected utility theory

Expected utility theory is based on three principles: (1) the
overall expected utility of a choice is equal to the sum of the prob-
ability weighted utilities of all possible outcomes; (2) a choice is
acceptable if it adds value to the existing asset portfolio; (3) all
investors are strictly risk-averse. Standard finance is based on the
assumption that investors behave rationally and take investment
decisions that optimize expected utility. Accordingly, expected
utility theory is a normative theory. In our simulation analysis,
however, we assume a prospect theory investor. Prospect theory
starts from empirical evidence to describe how individuals choose
between alternatives that involve risk. Several behavioral phenom-
ena have been discussed in the literature to describe how investors
evaluate potential gains and losses:
� Prospect theory investors evaluate their choices in terms of the
potential gains and losses relative to investor specific reference
points, a phenomenon which refers to the wider concept of
framing. This is in contrast to expected utility theory, where
investors evaluate their choices in terms of total expected
wealth.
� While standard investors are always risk-averse, prospect

theory investors are risk-averse in the domain of gains but
risk-seeking in the domain of losses. This assumption implies
an S-shaped value function, which passes through the reference
point and is concave over gains and convex over losses. The
value function replaces the standard utility function.
� Prospect theory investors exhibit loss aversion. Given the same

variation in absolute value away from the reference point, there
is a bigger impact of losses than of gains. Gains and losses of the
same amount are valued in an asymmetric way, and investors
care more about potential losses than potential gains.3

� In contrast to expected utility theory, prospect theory investors
weight the probabilities of various outcomes instead of using
the statistical probabilities. This approach allows incorporating
the empirical observation that investors overweight events
with low probability of occurrence, but underweight ‘‘average’’
events.

Expected utility theory assumes that investors are risk-averse
with a concave value (utility) function. In contrast, prospect theory
expresses outcomes as deviations (positive and negative) from a
reference point (Dx) and suggests an S-shaped value function, with
the curve being concave for gains and convex for losses. In addi-
tion, investor’s response to a loss is more extreme than the re-
sponse to a gain, implying that the value function is steeper for
losses than for gains. To capture these properties when evaluating
a stochastic outcome Dx, Tversky and Kahneman (1992) suggest a
two-part valuation function v(Dx):

vðDxÞ ¼
ðDxÞa Dx P 0

�k � ð�DxÞb Dx < 0

(
; ð11Þ

with a � b � 0.88 and k � 2.25. The S-shaped value function in Eq.
(11) is concave in the domain of gains (which implies risk-aversion)
and convex in the domain of losses (which implies risk-seeking).
The parameter k captures loss aversion, assuming that investors
consider losses more than twice as important as gains. Prelec
(2000) argues that the value function in Eq. (11) describes by far
the most popular way to estimate money value. Moreover, instead
of weighting the subjective values according to Eq. (11) with their
statistical probabilities, we use the probability weighting function
suggested by Lattimore et al. (1992):

wd;cðpÞ :¼ d � pc

d � pc þ ð1� pÞc
:¼

wþðpÞ :¼ dþ�pcþ

dþ�pcþþð1�pÞcþ
Dx P 0

w�ðpÞ :¼ d��pc�

d��pc�þð1�pÞc� Dx < 0

8<
: :

ð12Þ

The probability weighting function in Eq. (12) allows to distinguish
between two essential features based on the following parameters:
(1) the parameter c mainly controls curvature, and (2) the parame-
ter d mainly controls elevation.4 These two parameters incorporate
the experimental observation that prospect theory investors tend



Table 1
The four stock market scenarios.

Risk premium (simple returns)

Low High

Volatility
Low (normal) Scenario 1: Scenario 2:

� Risk premium: 4.5% � Risk premium: 7%
� Volatility: 20% � Volatility: 20%

High Scenario 3: Scenario 4:
� Risk premium: 4.5% � Risk premium: 7%
� Volatility: 30% � Volatility: 30%

7 Most studies that analyze portfolio insurance strategies based on Monte Carlo
simulations use this process for the generation of stock market returns (Benninga,
1990; Bird et al., 1990; Zhu and Kavee, 1988; Figlewski et al., 1993; Cesari and
Cremonini, 2003; Herold et al., 2007).

8
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to overweight small probability events. Based on the empirical re-
sults in Abdellaoui (2000), we choose d+ = 0.65, d� = 0.84, c+ = 0.6,
and c� = 0.65.5

The original version of the prospect theory (Kahneman and
Tversky, 1979) suffers from potential violations of first-order sto-
chastic dominance, implying that one prospect might be preferred
even if it yields a worse outcome with probability one. In order to
avoid a violation of first order stochastic dominance, we apply
Tversky and Kahneman’s (1992) cumulative prospect theory. While
single probabilities are weighted in prospect theory, the cumulative
probabilities are weighted in cumulative prospect theory:

pi :¼
p�i ¼ w�ðp1 þ � � � þ piÞ �w�ðp1 þ � � � þ pi�1Þ
pþi ¼ wþðpi þ � � � þ pNÞ �wþðpiþ1 þ � � � þ pNÞ

�
; ð13Þ

where i denotes the outcomes Dxi (with i = 1, . . . ,N), which are as-
sumed to be sorted in ascending order. After weighting the cumula-
tive probabilities in Eq. (12), the differences between neighboring
probability weightings (pi) are computed. As described in Tversky
and Kahneman (1992), the decision weight p�i , associated with a
negative outcome, is the difference between the weighted cumula-
tive probabilities (w-values) of the events ‘‘the outcome is at least
as bad as Dxi’’, and ‘‘the outcome is strictly worse than Dxi’’. Simi-
larly, the decision weight pþi , associated with a positive outcome,
is the difference between the w-values of the events ‘‘the outcome
is at least as good as Dxi’’, and ‘‘the outcome is strictly better than
Dxi’’.6 Given these decision weights (pi), the cumulative prospect va-
lue (CPV) of a strategy is:

CPVðStrategyÞ ¼
XN

i¼1

pi � vðDxiÞ: ð14Þ

In our simulation analyses, we apply Eqs. (11)–(14) on a step-by-
step basis. This step-wise procedure allows us to determine which
features of prospect theory are responsible for the attractiveness
of portfolio insurance strategies for a prospect theory investor com-
pared to other (benchmark) investment strategies.

4. Simulation analysis

This section presents our simulation results. We start with
Monte Carlo simulations in Section 4.1 and proceed with historical
simulations in Section 4.2. We also present the results from a bat-
tery of robustness tests.

4.1. Monte Carlo simulations

4.1.1. Simulation design
We start our analysis by running Monte Carlo simulations. In

this setup, we assume idealized stock markets in the sense that ob-
servable phenomena such as autocorrelation, skewness, and fat
tails are neglected. However, using different choices of the stochas-
tic parameters, we are able to compare different economic scenar-
ios. When modeling stock market returns, there are two important
parameters: (1) the equity risk premium and (2) the stock market
volatility. In order to analyze the influence of these factors in a sys-
tematic manner, we distinguish between four states of nature,
which are summarized in Table 1.

First, we assume a high and a low equity risk premium. Dimson
et al. (2006) report that the mean annual equity risk premium for
developed stock markets was approximately 7% between 1900 and
5 Gurevich et al. (2009) confirm that the shape of the value function and the
probability weighting function estimated from option data is in line with theory.

6 See Tversky and Kahneman (1992), p. 301. They describe the special properties of
the weighting function in Eq. (13) in more detail and provide a simple numerical
example.
2005. We take this long-run average value to represent the high
risk premium state. Dimson et al. (2006) further elaborate why
the future equity risk premium will be lower, and they estimate
the expected excess return to be around 4.5% per year. We use this
conservative estimate to represent the low risk premium state.
Second, we distinguish between a high and a low stock market vol-
atility state. We take a ‘‘normal’’ stock market return volatility to
represent the low volatility state. According to Dimson et al.
(2006), the long-run stock return volatility was roughly 20% per
year. Benninga (1990) and Figlewski et al. (1993) also use this va-
lue in their simulation studies. In contrast, we use a stock market
volatility of 30% per year in the high volatility state. In addition
to turbulent market environments, volatility of this magnitude
can be justified if the focus is on small cap stocks. Following Arnott
and Bernstein (2002), the rate of return on the risk-free asset is
fixed at 4.5%. Adding this value to the equity risk premium, we
have an expected annual stock market return of 9% in the low risk
premium state and of 11.5% in the high risk premium state.

Our Monte Carlo simulations generate continuously com-
pounded stock market returns, denoted as d(lnS), on the basis of
a Geometric Brownian motion (Hull, 2008)7:

dðln SÞ ¼ l� r2

2

� �
dt þ rdz: ð15Þ

In order to specify the mean (l) and volatility (r) parameters, we
transform the expected returns and standard deviations shown in
Table 1 (based on simple returns) into their corresponding continu-
ously compounded counterparts. The term dz represents a Wiener
process that describes the evolution of a normally distributed vari-
able. The stochastic process for stock returns in Eq. (15) is consis-
tent with the assumptions of the Black and Scholes (1973) option
pricing model, and hence with the synthetic put strategy.

Because many institutional and private investors use a one year
investment horizon (Benartzi and Thaler, 1995), we also focus on
this investment horizon in our simulation analysis. Using the sto-
chastic process in Eq. (15), we simulate 250 daily stock market re-
turns and apply the various portfolio insurance strategies. We take
10 basis points round-trip transaction costs into account.8 In order
to avoid portfolio shifts that are triggered by trendless market move-
ments, we implement the CPPI strategy, the TIPP strategy, and the
synthetic put strategy with a trading filter. Portfolio shifts are only
executed when the stock market moves by more than 2%.9 Moreover,
The same transaction costs are used in Herold et al. (2007). They argue that
transaction costs of 10 basis points are a conservative estimate when trades are
executed with futures.

9 The same trading filter is used in Do and Faff (2004). They explain their choice on
the basis of observed daily index movements. A comparable trading filter is used in
Cesari and Cremonini (2003); they only trade if the stock market moves more than
2.5% in one direction.
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we implement the CPPI strategy and the TIPP strategy with a base
case multiplier of m = 5, which is a commonly used value in com-
mercial applications (Herold et al., 2007). The synthetic put strategy
uses the ‘‘true’’ volatility (i.e., 20% or 30%), but it is modified as sug-
gested by Boyle and Vorst (1992).10 Moreover, we implement the
portfolio insurance strategies with a protection level of 100% (full
capital guarantee) and compare their performance with a buy-and-
hold stock market investment (e.g., the simple return of a passive
stock market fund) and the risk-free rate (e.g., the simple return of
a money market fund). As another benchmark, we contrast our sim-
ulation results with a balanced strategy, where 50% of the portfolio is
invested in the stock market and 50% in cash over the one year hori-
zon (without monthly rebalancing). In order to derive the full distri-
bution of outcomes, we perform 100,000 simulation runs. Repeated
simulations reveal that our results are very stable.

The simulation setup allows us to examine whether the pop-
ularity of portfolio insurance strategies can be explained within
the framework of prospect theory. Prospect theory suggests that
investors evaluate their opportunities relative to a reference
point. It seems plausible to assume that for many investors the
purchasing price of an asset is the relevant reference point.
Investors assess their investment opportunities in terms of abso-
lute returns, where positive returns represent gains and negative
returns losses (Kahneman and Riepe, 1998; Fisher and Statman,
1999). Therefore, we use simple returns (and hence a reference
point of zero) to compute prospect values based on the valuation
function in Eq. (11). In order to assess the impact of the various
elements of prospect theory (e.g., the S-shaped value function,
loss aversion, or probability weighting), we implement our simu-
lations on a step-by-step basis. This modular simulation design
enables us to examine the contribution of the different features
of prospect theory for the attractiveness of portfolio insurance
strategies:

1. In the first step, we use the valuation function in Eq. (11), set
the parameter k = 1, and omit probability weightings. Accord-
ingly, we take the simple mean of the simulated prospect val-
ues. This most basic setup incorporates the S-shaped
valuation function with risk-aversion in the domain of gains
and risk-seeking in the domain of losses. However, it does not
account for loss aversion.

2. In the second step, we use the valuation function in Eq. (11) and
set the loss aversion parameter k = 2.25. Again, we omit using a
probability weighting. This extended setup is consistent with
prospect theory and captures the simultaneous risk-avoiding
and risk-seeking behavior together with loss aversion.

3. In the third step, we incorporate the elements of cumulative
prospect theory as shown in Eqs. (12)–(14). Any observable
deviations of the mean cumulative prospect values from the
simulation results in the previous steps must be attributed to
the impact of the cumulative probability weightings.
11 We recognize that the standard deviation is not the preferable risk measure when
analyzing investment strategies with an asymmetric return distribution. Presumably,
downside risk measures (e.g., lower partial moments or Value-at-Risk) are more
appropriate. However, our analysis focuses on prospect values.

12 A paired t-test is frequently used to test if the performance or risk measures of
investment strategies are significantly different. For example, Annaert et al. (2009)
use a paired t-test to test the differences of expected shortfall measures. We recognize
that there exist other hypothesis tests that are potentially more powerful, such as
tests that take the whole distribution into account (Linton et al., 2005).

13 We again use a paired t-test to test if the mean prospect values of the various
protection strategies are different from the respective benchmark strategy with the
hightest mean prospect value. For example, in scenario 1 (Panel A) the stock market
investment exhibits the highest mean prospect value (5.92) for k = 1. However, the
4.1.2. Main simulation results
Table 2 shows our simulation results for all portfolio insur-

ance strategies with a 100% protection level together with the
three benchmark strategies. Panel A presents the results for sce-
nario 1 with a conservative equity risk premium of 4.5% and a
stock market volatility of 20% per year. As one would expect,
the stock market investment exhibits a higher mean return than
all four portfolio insurance strategies due to the risk premium ef-
fect (e.g., 9.03% vs. 6.22% for the stop-loss strategy). However, the
standard deviations of the portfolio insurance strategies are sig-
10 We also run the simulations using the original (unmodified) volatility and the
modification suggested by Leland (1985). However, the simulation results are not
sensitive to these changes.
nificantly lower than the volatility of the passive stock market
strategy.11 This is particularly true for the TIPP strategy and the
CPPI strategy (with a volatility of 2.24% and 5.88%, respectively).
Based on the Sharpe-ratio, both the passive stock market strategy
and the balanced strategy dominate all four portfolio insurance
strategies. However, the most important observation is that these
findings reverse when the analysis is based on cumulative prospect
values. While the passive stock market investment exhibits a
cumulative prospect value of �0.02, the CPPI strategy delivers a
cumulative prospect value of 4.54, the TIPP strategy of 3.54, the
stop-loss strategy of 4.65, and the synthetic put strategy of 4.28.
We conduct a paired t-test to validate that the cumulative prospect
values of the portfolio insurance strategies are significantly differ-
ent from the benchmark strategy with the highest cumulative
prospect value.12 In Panel A, the cash investment boasts the high-
est cumulative prospect value of 3.76 among all benchmark strat-
egies. This value is higher than the cumulative prospect value of
the TIPP strategy, but clearly lower than the corresponding values
of the CPPI stategy, the stop-loss strategy, and the synthetic put
strategy. All differences are statistically significant at the 1% level.
Therefore, at least from the standpoint of a prospect theory inves-
tor, a portfolio insurance strategy with a 100% protection level
(with exception of the TIPP strategy) seems to be an attractive
investment strategy.

In order to provide more detailed insights, we compare the
mean prospect values that are derived with loss aversion param-
eters k = 1 and k = 2.25.13 While the passive stock market invest-
ment exhibits a significantly higher mean prospect value than all
portfolio insurance strategies for k = 1 (e.g., 5.92 vs. 4.27 for the
CPPI strategy), the opposite ranking of the strategies is observed
for k = 2.25. This finding suggests that the S-shaped utility function
alone is not able to explain the superiority of portfolio insurance
strategies. However, if loss aversion is incorporated as an additional
feature of prospect theory, all four portfolio insurance strategies de-
liver a higher mean prospect value than the passive stock market
strategy (e.g., 4.27 vs. 2.41 for the CPPI strategy).14 Accordingly,
consistent with the finding by Hwang and Satchell (2010) that
investors are more loss-averse than usually assumed, loss aversion
is one explanation for the attractiveness of portfolio insurance strat-
egies. Observing that the difference between the cumulative pros-
pect values of the portfolio insurance strategies and the passive
stock market investment is higher than the difference between
the mean prospect values with k = 2.25 (e.g., 4.54 vs. �0.02 com-
pared to 4.27 vs. 2.41 for the CPPI strategy), the probability weight-
ing scheme further contributes to the attractiveness of protection
strategies. An explanation for this finding is that extremely adverse
states, whose negative prospect values cannot be offset by the po-
sitive risk premium effect during the one year investment horizon,
money market investment boasts the highest mean prospect value (3.76) for k = 2.25.
14 For the CPPI strategy and the TIPP strategy the mean prospect values are identical

for k = 1 and k = 2.25. This indicates that the floor (100%) is not violated, and hence the
value of the loss aversion parameter is not relevant. However, this result cannot be
observed for the stop-loss strategy and the synthetic put strategy.



Table 2
Base case Monte Carlo simulation results.

CPPI TIPP Stop-loss Synthetic put Stock market Cash 50:50 B&H

Panel A: Expected return = 9%, volatility = 20%
Mean return p.a. (%) 5.47 4.89 6.22 6.20 9.03 4.50 6.76
Volatility p.a. (%) 5.88 2.24 14.72 10.75 19.90 0.00 9.95
Sharpe-ratio 0.16 0.17 0.12 0.16 0.23 – 0.23
Mean prospect value (k = 1.0) 4.27⁄⁄ 4.00⁄⁄ 3.90⁄⁄ 4.33⁄⁄ 5.92 3.76 4.84
Mean prospect value (k = 2.25) 4.27⁄⁄ 4.00⁄⁄ 3.18⁄⁄ 3.93⁄⁄ 2.41 3.76 3.60
Cumulative prospect value 4.54⁄⁄ 3.54⁄⁄ 4.65⁄⁄ 4.28⁄⁄ �0.02 3.76 2.00

Panel B: Expected return = 11.5%, volatility = 20%
Mean return p.a. (%) 6.10 5.13 7.51 7.40 11.46 4.50 7.98
Volatility p.a. (%) 6.25 2.25 15.79 11.47 19.82 0.00 9.91
Sharpe-ratio 0.26 0.28 0.19 0.25 0.35 – 0.35
Mean prospect value (k = 1.0) 4.71⁄⁄ 4.17⁄⁄ 4.75⁄⁄ 5.16⁄⁄ 7.55 3.76 5.72
Mean prospect value (k = 2.25) 4.71⁄ 4.17⁄⁄ 4.08⁄⁄ 4.81⁄⁄ 4.74 3.76 4.75
Cumulative prospect value 4.93⁄⁄ 3.70⁄⁄ 5.35⁄⁄ 4.93⁄⁄ 1.97 3.76 3.02

Panel C: Expected return = 9%, volatility = 30%
Mean return p.a. (%) 5.31 4.78 5.73 5.63 8.96 4.50 6.73
Volatility p.a. (%) 9.65 2.84 18.95 13.23 29.88 0.00 14.94
Sharpe-ratio 0.08 0.10 0.06 0.09 0.15 – 0.15
Mean prospect value (k = 1.0) 3.97⁄⁄ 3.88⁄⁄ 3.29⁄⁄ 3.73⁄⁄ 5.44 3.76 4.53
Mean prospect value (k = 2.25) 3.97⁄⁄ 3.88⁄⁄ 2.20⁄⁄ 3.32⁄⁄ �0.85 3.76 1.91
Cumulative prospect value 5.20⁄⁄ 3.44⁄⁄ 4.86⁄⁄ 4.79⁄⁄ �2.82 3.76 0.51

Panel D: Expected return = 11.5%, volatility = 30%
Mean return p.a. (%) 5.96 4.99 6.63 6.56 11.54 4.50 8.02
Volatility p.a. (%) 10.27 2.84 20.09 14.12 29.82 0.00 14.91
Sharpe-ratio 0.14 0.17 0.11 0.15 0.24 – 0.24
Mean prospect value (k = 1.0) 4.41⁄⁄ 4.04⁄⁄ 3.85⁄⁄ 4.35⁄⁄ 7.11 3.76 5.43
Mean prospect value (k = 2.25) 4.41⁄⁄ 4.04⁄⁄ 2.81⁄⁄ 3.97⁄⁄ 1.70 3.76 3.23
Cumulative prospect value 5.62⁄⁄ 3.57⁄⁄ 5.46⁄⁄ 5.35⁄⁄ �0.70 3.76 1.61

This table shows the results from our base case Monte Carlo simulations for portfolio insurance strategies. Continuously compounded stock market returns are generated
using a Geometric Brownian motion. The assumptions for expected returns and standard deviations in Panels A–D are taken from the four stock market scenarios shown in
Table 1. The risk-free rate is fixed at 4.5%. We simulate 250 daily stock market returns and implement the portfolio insurance strategies with 10 basis points round-trip
transaction costs, a trading filter of 2%, and a protection level of 100%. We perform 100,000 simulation runs in order to derive the full distribution of prospect values for the
portfolio insurance strategies and the benchmark strategies (a passive stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy (50:50 B&H)
without monthly rebalancing). The null hypothesis in the paired t-test is that the (mean or cumulative) prospect value of a portfolio insurance strategy is equal to that of the
best corresponding benchmark strategy.
⁄ The test statistic is significant at the 5% level.
⁄⁄ The test statistic is significant at the 1% level.
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receive higher probability weights. Similar results can be observed
for the balanced strategy.

The comparison with the money market investment reveals
additional insights. Cash earns an annual return of 4.5% without
any loss potential, and hence one would expect that it is attractive
for a prospect theory investor. In fact, with a cumulative prospect
value of 3.76, the money market investment dominates the passive
stock market strategy and the balanced strategy (with cumulative
prospect values of �0.02 and 2.00, respectively). However, its
cumulative prospect value is lower than that of the CPPI strategy
(3.76 vs. 4.54), the stop-loss strategy (3.76 vs. 4.65), and the syn-
thetic put strategy (3.76 vs. 4.28). Again, this result is not observa-
ble for the TIPP strategy. The TIPP strategy exhibits a significantly
lower cumulative prospect value than the money market invest-
ment (3.54 vs. 3.76). An explanation for this observation could be
that the CPPI strategy, the stop-loss strategy, and the synthetic
put strategy protect an investor’s initial wealth, while the TIPP
strategy also attempts to protect all interim capital gains. Specifi-
cally, in the TIPP strategy the initial floor is dynamically ratchet
up whenever the investor earns capital gains. An implication of a
higher floor is that the current wealth more often reaches or drops
below this level, in which case all holdings of the risky asset are
shifted into the risk-free asset. The cash position is then held until
the end of the investment horizon, and hence a TIPP strategy inves-
tor cannot participate from any subsequent upward market move-
ments. This higher frequency of ending up in the risk-free asset
(compared to the CPPI strategy) explains why the TIPP strategy
generates the lowest mean return of all four portfolio insurance
strategies. In fact, with an annual mean return of 4.89%, this pro-
tection strategy exhibits only a slightly higher return potential
than the cash investment (4.50%). Given that the TIPP strategy
avoids losses at least as good as the simpler CPPI strategy, the infe-
riority of this strategy must be a result of its reduced upside
participation.

The CPPI strategy dominates the TIPP strategy in terms of mean
prospect values (4.27 vs. 4.00), and the difference becomes more
pronounced based on cumulative prospect values (4.54 vs. 3.54).
This finding indicates that probability weighting (as shown in
Eqs. (12) and (13)) makes the CPPI strategy (as well as the stop-loss
strategy and the synthetic put strategy) more attractive and the
TIPP strategy less attractive for prospect theory investors. Since
the probability weighting scheme puts high weights on extreme
but rare events, an explanation is the insufficient participation of
the TIPP strategy in upward market movements.

Panel B displays the simulation results for the high return state
with an equity risk premium of 7% per year (hence a total return of
11.5%) in combination with a volatility of 20% per year. Our major
results remain valid in this second scenario. Although the cumula-
tive prospect values of all four portfolio insurance strategies are
still higher than the corresponding value of the passive stock mar-
ket investment, the differences shrink compared to Panel A. More
important, in most cases the combination of an S-shaped utility
function and loss aversion is not sufficient to explain our findings.
The mean prospect value with a loss aversion parameter k = 2.25 is
4.71 for the CPPI strategy, 4.17 for the TIPP strategy, and 4.08 for
the stop-loss strategy, while the corresponding value for a stock
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market investment is 4.74. Therefore, the superiority of protection
strategies over the stock market investment is dependent on the
probability weighting scheme.15 As in Panel A, the TIPP strategy is
the only strategy with a lower cumulative prospect value than the
money market investment.

Panel C shows the simulation results when the equity risk pre-
mium is low (with a total return of 9% per year) and the volatility is
high (with a standard deviation of 30% per year). In this third sce-
nario all portfolio insurance strategies dominate the stock market
investment and the balanced strategy in terms of their cumulative
prospect values. The cumulative prospect value of the stock market
strategy even becomes negative (�2.82). An explanation for this
observation is that a higher return volatility causes large gains (po-
sitive returns) but also large losses (negative returns). Because of
an overweighting of negative returns relative to positive returns,
a symmetric return effect leads to a lower cumulative prospect va-
lue for the stock market investment. A comparison of the mean
prospect values for k = 1.0 and for k = 2.25 supports this hypothe-
sis. The mean prospect value of the passive stock market invest-
ment decreases from 5.44 (without loss aversion) to �0.85 (with
loss aversion). In a portfolio insurance strategy large positive and
large negative stock market returns (due to higher volatility) have
different effects. On the one hand, a protection strategy avoids
large negative stock market returns, and hence they cannot exert
a negative effect on the cumulative prospect value. On the other
hand, large positive stock market returns have a positive impact
on the cumulative prospect value. This property of protection strat-
egies – to avoid the downside potential while maintaining some
upside potential – explains their favorable impact on the cumula-
tive prospect value. Again, the TIPP strategy is the only strategy
with a lower cumulative prospect value than the money market
investment.

Finally, the simulation results in Panel D (with a high equity risk
premium and a high volatility) also confirm our main findings. In
this scenario, the cumulative prospect value of the passive stock
market investment is still negative (�0.70). Compared to Panel C,
however, the increase of the expected return from 9% to 11.5%
per year (given a high stock market volatility of 30% per year) in
Panel D leads to an increase of the cumulative prospect value for
all four portfolio insurance strategies.

Overall, our Monte Carlo simulation results reveal that the CPPI
strategy, the stop-loss strategy, and the synthetic put strategy sig-
nificantly dominate all three benchmark strategies in all four stock
market scenarios in terms of their cumulative prospect values, and
hence they are an attractive investment strategy for a prospect the-
ory investor. In contrast, the TIPP strategy exhibits a cumulative
prospect value that makes it inferior compared to the money mar-
ket investment in all four stock market scenarios.
16 The only exception is the benchmark strategy, whose stock market allocation
corresponds to the average stock market allocation of the TIPP strategy in scenario 2
(Panel B in Appendix A). This strategy exhibits a cumulative prospect value of 3.83
4.1.3. Robustness tests
An immediate question is whether our simulation analysis uses

adequate benchmark strategies. We cannot rule out that there ex-
ist other benchmark strategies which provide higher cumulative
prospect values than a money market investment (which is the
benchmark strategy with the highest cumulative prospect value
in all four scenarios). As a robustness test, we construct alternative
benchmark strategies in the spirit of Sharpe’s (1992) style analysis.
We measure the average stock market allocation of each protection
strategy in each single simulation run and compute the mean value
over all 100,000 simulation runs. These mean values are dependent
on the stock market development, and hence we obtain for each
protection strategy and for each stock market scenario an average
15 In a slightly different context, Dierkes et al. (2010) also document that probability
weighting is an important factor for portfolio insurance strategies’ attractiveness.
stock market allocation. Based on these average stock market
exposures, we construct alternative benchmark strategies similar
to our balanced strategy. These mixed stock-money market bench-
mark strategies consist of a x% stock market allocation and a
(1 � x%) cash position, where the fixed weight x denotes the
strategy- and scenario-specific average stock market exposure.
We again consider buy-and-hold strategies without monthly
rebalancing. The cumulative prospect values of these alternative
stock-money market strategies together with the strategy- and
scenario-specific average stock market allocations are shown in
Appendix A. With only one exception all additional benchmark
strategies exhibit significantly lower cumulative prospect values
than the money market investment, which remains the dominat-
ing benchmark strategy.16

In another battery of robustness tests, we rerun our Monte Carlo
simulations with several modifications. In a first step, in Panel A of
Table 3 we reduce the risk-free rate from 4.5% to 3.5%. As one
would expect, the attractiveness of all portfolio insurance strate-
gies decreases. Nevertheless, the dominance of the CPPI strategy,
the stop-loss strategy, and the synthetic put strategy against the
money market investment (as the most attractive benchmark
strategy) in terms of cumulative prospect values remains un-
changed in all four stock market scenarios. In a second step, in Pa-
nel B of Table 3 we increase the risk-free rate from 4.5% to 5.5%. All
strategies become more attractive from the perspective of a pros-
pect theory investor, but the CPPI strategy, the stop-loss strategy,
and the synthetic put strategy again dominate the money market
investment.

In order to analyze the dependence of our simulation results
on the choice of the probability weighting scheme, we use the
alternative probability weighting parameters suggested by Abdel-
laoui et al. (2005). While their probability weighting function is
identical to that in Eq. (12), they choose the parameters d and c
slightly different from the values that we use in our base case
analysis (which are chosen according to Abdellaoui, 2000). In re-
sults not shown, the CPPI strategy, the stop-loss strategy, and
the synthetic put strategy again exhibit higher cumulative pros-
pect values than the three benchmark strategies in all four stock
market scenarios. Moreover, in this framework even the TIPP
strategy exhibits higher cumulative prospect values than the
money market investment.

4.2. Historical simulations

Monte Carlo simulations have the advantage that they allow to
derive a distribution under different economic scenarios. However,
the stochastic process for stock returns that is used in Section 4.1 is
only a limited model of financial markets. For example, stock mar-
ket returns are characterized by short-term autocorrelation and
long-term mean reversion (Poterba and Summers, 1988). Stock
market returns also deviate from the normal distribution model
with constant volatility (homoskedasticity). Specifically, stock
market returns are often heteroskedastic and left-skewed, and they
exhibit fat tails (Annaert et al., 2009; Kapetanios, 2009). Another
simplification in our analysis is the assumption of a constant
risk-free rate. In order to capture these effects, we perform a his-
torical simulation using financial markets data. Specifically, we
use daily return data for the German stock market index DAX
compared to 3.76 for the money market investment. However, when we compare this
value with the cumulative prospect values of our protection strategies (Panel B in
Table 2), we observe a dominance of the CPPI, the stop-loss, and the synthetic put
strategy against this benchmark strategy.



Table 3
Robustness tests for Monte Carlo simulations.

CPPI TIPP Stop-loss Synthetic put Stock market Cash 50:50 B&H

Panel A: Risk-free rate = 3.5%
Exp. return = 9%, volatility = 20% 3.82⁄⁄ 2.88⁄⁄ 4.15⁄⁄ 3.80⁄⁄ �0.12 3.01 1.51
Exp. return = 11.5%, volatility = 20% 4.17⁄⁄ 3.02 4.85⁄⁄ 4.47⁄⁄ 1.94 3.01 2.59
Exp. return = 9%, volatility = 30% 4.44⁄⁄ 2.79⁄⁄ 4.32⁄⁄ 4.22⁄⁄ �2.91 3.01 0.01
Exp. return = 11.5%, volatility = 30% 4.79⁄⁄ 2.89⁄⁄ 4.82⁄⁄ 4.72⁄⁄ �0.76 3.01 1.14

Panel B: Risk-free rate = 5.5%
Exp. return = 9%, volatility = 20% 5.18⁄⁄ 4.15⁄⁄ 5.05⁄⁄ 4.67⁄ �0.02 4.48 2.44
Exp. return = 11.5%, volatility = 20% 5.61⁄⁄ 4.34⁄⁄ 5.76⁄⁄ 5.37⁄⁄ 2.00 4.48 3.46
Exp. return = 9%, volatility = 30% 5.82⁄⁄ 4.03⁄⁄ 5.37⁄⁄ 5.25⁄⁄ �2.89 4.48 0.91
Exp. return = 11.5%, volatility = 30% 6.37⁄⁄ 4.20⁄⁄ 6.05⁄⁄ 5.89⁄⁄ �0.67 4.48 2.06

This table shows the results from robustness tests of our Monte Carlo simulations for portfolio insurance strategies. The entries exhibit cumulative prospect values.
Continuously compounded stock market returns are generated using a Geometric Brownian motion. The assumptions for expected returns and standard deviations in Panels
A and B are taken from the four stock market scenarios presented in Table 1. The risk-free rate is 3.5% in Panel A and 5.5% in Panel B. We simulate 250 daily stock market
returns and implement the portfolio insurance strategies with 10 basis points round-trip transaction costs, a trading filter of 2%, and a protection level of 100%. We perform
100,000 simulation runs in order to derive the full distribution of prospect values for the portfolio insurance strategies and three benchmark investment strategies (a passive
stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy (50:50 B&H) without monthly rebalancing). The null hypothesis in the paired t-test is
that the cumulative prospect value of a portfolio insurance strategy is equal to that of the money market investment (which is the benchmark strategy with the highest
cumulative prospect value).
⁄ The test statistic is significant at the 5% level.
⁄⁄ The test statistic is significant at the 1% level.

Table 4
Descriptive statistics of German stock and money market returns.

Stock market (DAX) (%) Risk-free rate (%)

Mean annual return 10.62 5.14
Annual volatility 24.36 2.50

This table shows descriptive statistics of the German stock and money markets
based on discrete annual returns over the period from January 1980 to October
2009 (including 7778 daily returns).

Table 5
Distributional characteristics of German stock market returns.

Value Q-statistic

Panel A: Autocorrelation
AC (1) �0.008 Q (1): 0.55
AC (2) �0.029 Q (2): 7.25⁄

AC (3) �0.018 Q (3): 9.67⁄

AC (4) 0.030 Q (4): 16.47⁄⁄

AC (5) �0.010 Q (5): 17.24⁄⁄

Value T � R2

Panel B: Heteroskedasticity
ARCH (1) – 293.03⁄⁄

ARCH (3) – 824.04⁄⁄

Value Jarque–Bera statistic

Panel C: Skewness, fat tails, and test for normal distribution
Skewness �0.32 –
Kurtosis 10.51 –
Test for normality – 18457.46⁄⁄

This table shows the distributional characteristics of German stock market returns.
The sample contains continuously compounded DAX returns over the period from
January 1980 to October 2009 (including 7778 daily stock market returns).
⁄ The test statistic is significant at the 5% level.
⁄⁄ The test statistic is significant at the 1% level.

18 This is a particular problem for the money market series. While the cash market
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(Deutscher Aktienindex) and money market rates from the German
Bundesbank over the period from January 1980 to October 2009.17

Table 4 shows descriptive statistics of stock market returns and
money market rates. The annual mean return of the German stock
market is 10.62%; it falls between 9% and 11.5%, which are the ex-
pected stock market returns in the scenarios presented in Table 1.
The historical volatility of 24.36% per year also falls between our
high (30%) and low (20%) volatility state assumptions.

Table 5 presents the statistical properties of daily continuously
compounded DAX returns. Panel A shows the autocorrelations of
daily DAX returns. Although all values are close to zero, a Ljung–
Box test up to lag 5 indicates statistically significant autocorrela-
tions. Moreover, we conduct Engle’s (1982) Lagrange multiplier
test to detect heteroskedasticity. The results in Panel B indicate
heteroskedasticity effects in daily DAX returns at lag 1 and up to
lag 3. Finally, the Jarque–Bera test statistic in Panel C reveals that
the null hypothesis of a normal distribution must be rejected.
The negative value for the skewness (�0.32) indicates that the re-
turn distribution is left-skewed. Moreover, the value for the kurto-
sis (10.51) is significantly larger than 3, which is a hint for fat tails.

In our historical simulation, we use 250 subsequently following
daily stock and money market returns on a rolling windows basis
(moving the window forward by one day) and implement our port-
folio insurance and benchmark strategies. This approach delivers
7529 overlapping yearly performance data for each investment
strategy, and hence it uses the available data in a most efficient
way. Most important, it preserves all dependency effects in the
time series (e.g., autocorrelation and heteroskedasticity). This is
also the reason why we do not use a bootstrap approach, where
17 The money market rates are average values from the one month Frankfurt
interbank rate (middle rate).
daily stock and cash market returns are drawn randomly with
replacement. In this way, any serial dependencies in the time ser-
ies will be destroyed (Politis, 2003).18 An alternative that avoids this
shortcoming is a block-bootstrap approach, where continuous blocks
of 250 daily stock and cash market returns are randomly drawn with
replacement (Annaert et al., 2009). However, this approach cannot
strictly guarantee that each available year consisting of 250 contin-
uous daily stock and cash market return data will be resampled. Sim-
ilarly, some years could can be drawn more often than other ones. In
contrast, our rolling windows simulation methodology ensures that
each window (consisting of 250 daily stock and cash market returns)
is exactly considered once.
rates vary significantly during the sample period, they change only slowly as time
elapses. Therefore, drawing 250 daily cash market returns randomly leads to a much
higher volatility compared to the volatility of 250 subsequently following cash rates.
This artificially generated uncertainty in the risk-free rate leads to biased results for
some protection strategies.



Table 6
Comparing historical simulations with Monte Carlo simulations.

CPPI TIPP Stop-loss Synthetic put Stock market Cash 50:50 B&H

Panel A: Historical simulations
Mean return p.a. (%) 6.18 5.21 9.05 8.12 10.62 5.15 7.89
Volatility p.a. (%) 6.57 3.42 17.80 10.82 24.36 2.50 12.12
Sharpe-ratio 0.16 0.02 0.22 0.27 0.22 0.00 0.23
Mean prospect value (k = 1.0) 4.70 4.17 5.63 5.72 6.93 4.18 5.59
Mean prospect value (k = 2.25) 4.65 4.14 4.46 5.11 2.22 4.18 3.68
Cumulative prospect value 4.41 3.44 4.85 4.32 �2.05 3.91 0.95

Panel B: Monte Carlo simulations based on real return and risk parameters
Mean return p.a. (%) 6.44 5.61 7.21 7.13 10.57 5.14 7.86
Volatility p.a. (%) 8.63 2.86 17.77 13.05 24.28 0.00 12.14
Sharpe-ratio 0.15 0.16 0.12 0.15 0.22 – 0.22
Mean prospect value (k = 1.0) 4.85 4.50 4.40 4.84 6.73 4.22 5.48
Mean prospect value (k = 2.25) 4.85 4.50 3.57 4.46 2.50 4.22 3.95
Cumulative prospect value 5.54⁄⁄ 3.98⁄⁄ 5.45⁄⁄ 5.22⁄⁄ �0.05 4.22 2.25

This table compares the results from historical simulations with Monte Carlo simulations. The historical simulation analysis shown in Panel A is based on the daily returns of
the German stock and money markets over the sample period from January 1980 to October 2009. We use 250 subsequently following daily returns on a rolling windows
basis (moving the window forward by one day) and implement different investment strategies. This approach delivers 7529 overlapping yearly returns for the portfolio
insurance strategies and three benchmark investment strategies (a passive stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy (50:50
B&H) without monthly rebalancing). The Monte Carlo simulations shown in Panel B are based on the historical return and risk parameters. The portfolio insurance strategies
are implemented with 10 basis points round-trip transaction costs, a trading filter of 2%, and a protection level of 100%. Statistical hypothesis tests in Panel A are complicated
by dependence; the computation of confidence intervals based on a moving block bootstrap is discussed in Section 4.2. The null hypothesis in the paired t-test in Panel B is
that the cumulative prospect value of a portfolio insurance strategy is equal to that of the money market investment (which is the benchmark strategy with the highest
cumulative prospect value).
� The test statistic is significant at the 5% level.
⁄⁄ The test statistic is significant at the 1% level.

21 The mean prospect values and the cumulative prospect values of the cash
investment are identical in all our Monte Carlo simulations. An explanation is that the
cash position is assumed to be truly risk-free (a fixed rate with zero volatility) in our
Monte Carlo simulations. Therefore, the weighting scheme does not matter, and hence
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The results of our historical simulations are presented in Panel
A of Table 6. They reveal that the cumulative prospect value be-
comes negative for the passive stock market investment (�2.05),
indicating the inferiority of this investment strategy for a prospect
theory investor. As in our Monte Carlo simulations, the money
market investment delivers the highest cumulative prospect value
(3.91) and serves as the benchmark strategy. Our main finding is
that the CPPI strategy, the stop-loss strategy, and the synthetic
put strategy again dominate the money market investment. How-
ever, this result is not observable for the TIPP strategy; once more
it provides a cumulative prospect value below the money market
investment (3.44 vs. 3.91).

While the differences in cumulative prospect values are large in
magnitude, testing for differences in mean is highly nontrivial un-
der dependence (Politis, 2003). Our historical simulations produce
prospect values that exhibit very high autocorrelation (due to the
strongly overlapping windows) and heteroskedasticity. In order
to assess statistical significance, we compute the differences be-
tween the prospect values of the different portfolio insurance
strategies and the money market investment (as the best bench-
mark strategy) and apply a moving block bootstrap on these differ-
ence series. The moving block bootstrap is a resampling method for
assigning measures of accuracy to statistical estimates when the
observations are in the form of finite time series of correlated data.
It does not require special assumptions and consists of drawing
blocks of fixed length randomly with replacement and joining
them to get new, full-size pseudo-series (Politis, 2003). We follow
the algorithm in Politis et al. (1997) to generate confidence inter-
vals for the null hypothesis that the mean of a difference series is
equal to zero.19 To account for a potential bias in the bootstrap
distribution, we use the double bootstrap method (Davison and
Hinkley, 1997).20 We experiment with moving block sizes of n1/3,
n1/4, and n1/5, where n is the length of a difference series (Politis
et al., 1997). Our results from a moving block-bootstrap indicate that
19 For more details, see Politis et al. (1997), p. 293.
20 In order to save computing time in bootstrapping a bootstrap, we resample 500

series in the first-stage bootstrap. For each first-stage resample, we again resample
200 series in the second-stage bootstrap.
the CPPI strategy and the synthetic put strategy significantly domi-
nate the money market investment in terms of their mean and
cumulative prospect values independent of the block size. In con-
trast, although it exhibits the highest cumulative prospect value,
for the stop-loss strategy the double bootstrap confidence intervals
indicate that its superiority against the cash investment depends
on the choice of the block size (with shorter blocks favouring
statistical significance). This observation is intuitive given that the
stop-loss strategy exhibits the highest annual volatility.

Overall, the results from the Monte Carlo simulations in Sec-
tion 4.1 and the historical simulation approach in this section are
qualitatively similar. Nevertheless, the individual cumulative pros-
pect values differ. It is unclear whether this effect is driven by the
different values for the equity risk premium and the volatility of
stock returns or by statistical return properties (e.g., left-skewness
and fat tails; see Table 5). In order to get more detailed insights, we
conduct another Monte Carlo simulation based on the exact histor-
ical return and risk parameters, as shown in Table 4. Panel B of Ta-
ble 6 displays the results. A comparison of Panel A and Panel B
reveals that the cumulative prospect values for the four portfolio
insurance strategies as well as all benchmark strategies are higher
in the Monte Carlo simulations than in the historical simulation
approach. This finding suggests that the time series characteristics
of stock market returns adversely impact the cumulative prospect
values. However, our main result is not affected by these statistical
properties, such as skewness and fat tails. The stop-loss strategy,
the synthetic put strategy, and the CPPI strategy still dominate
the money market investment in terms of their cumulative pros-
pect values; this is not the case for the TIPP strategy.21
the calculation of the mean prospect values (with equal weighting of all prospect
values) leads to the same result as the cumulative prospect values (with varying
weighting factors for the individual prospect values). In contrast, in our historical
simulations the time series of the risk-free rate exhibits moderate volatility. Accord-
ingly, the weighting scheme matters, and hence we observe different values for the
mean prospect values and the cumulative prospect values of the cash investment.



Table 7
Synthetic put strategy and the impact of volatility estimation errors.

Synthetic put strategy Stock market Cash 50:50 B&H

Volatility estimation (%) 24.36 34.36 14.36 – – –
Type of estimation error Unbiased Overest. Underest.
Mean return p.a. (%) 8.12 6.93 9.54 10.62 5.15 7.89
Volatility p.a. (%) 10.82 7.58 14.98 24.36 2.50 12.12
Sharpe-ratio 0.27 0.23 0.29 0.22 0.00 0.23
Mean prospect value (k = 1.0) 5.72 5.14 6.33 6.93 4.18 5.59
Mean prospect value (k = 2.25) 5.11 4.87 4.88 2.22 4.18 3.68
Cumulative prospect value 4.32 4.22 3.94 �2.05 3.91 0.95

This table shows the results from historical simulations for the synthetic put strategy and the impact of volatility estimation errors. The results are based on the daily returns
of the German stock and money markets over the sample period from January 1980 to October 2009. We use 250 subsequently following daily returns on a rolling windows
basis (moving the window forward by one day) and implement the synthetic put strategy. Our rolling windows simulation approach delivers 7529 overlapping yearly returns
for the synthetic put strategy and three benchmark investment strategies (a passive stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy
(50:50 B&H) without monthly rebalancing). The benchmark case simulates the synthetic put strategy with the ‘‘true’’ stock market volatility of 24.36% (the unbiased volatility
estimation). As a comparison, we also simulate the synthetic put strategy with an overestimated volatility of 34.36% (+10 percentage points) and an underestimated volatility
of 14.36% (�10 percentage points). The synthetic put strategy is implemented with 10 basis points round-trip transaction costs, a trading filter of 2%, and a protection level of
100%. As discussed in Section 4.2, statistical hypothesis tests are complicated by dependence.
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Potential estimation errors are another issue to be considered.
In particular, the future stock market volatility is unknown and
must be estimated for the synthetic put strategy. Rendleman and
O’Brien (1990) document that an ‘‘underestimated’’ volatility leads
to an ‘‘underprotection’’ of the synthetic put strategy; in contrast,
an ‘‘overprotection’’ due to an ‘‘overestimated’’ volatility causes a
reduction in the return potential. The impact of a misestimated
volatility on the cumulative prospect values is unclear. In order
to get more detailed insight, we repeat our historical simulations
for the synthetic put strategy. As in the benchmark case, we simu-
late the synthetic put strategy with the ‘‘true’’ stock market volatil-
ity of 24.36% (the unbiased volatility estimation). As a comparison,
we simulate the synthetic put strategy with an overestimated vol-
atility of 34.36% (+10 percentage points) as well as an underesti-
mated volatility of 14.36% (�10 percentage points). Table 7
displays the simulation results. As one would expect, an overesti-
mated volatility leads to a reduced return potential, with a mean
annual return of only 6.93% compared to 8.12% in the base case.
An underestimated volatility is characterized by higher strategy
risk, as indicated by a volatility of 14.98% compared to 10.82% in
the base case. An overestimation of the volatility by +10 percent-
age points only leads to a moderate reduction of the cumulative
prospect value (from 4.32 to 4.22). In contrast, an underestimation
of the volatility by �10 percentage points leads to a cumulative
prospect value of only 3.94. This value is almost identical to the
cumulative prospect value of the money market investment
(3.91), but it is still higher than the corresponding values of the
passive stock market investment (�2.05) and the balanced strategy
(0.95). These preliminary findings seem to suggest that volatility
misestimation does not exert a large negative impact on the cumu-
lative prospect values.

An obvious limitation of our attempt to incorporate estimation
errors is that we assume a constant volatility and a constant esti-
mation error over the entire simulation period. In practice, volatil-
ity can change dramatically over time, and hence investors will
take this time-variation into account when implementing protec-
tion strategies. Therefore, we refine our backtest and incorporate
time-varying volatility estimates in the same way as described in
Annaert et al. (2009). Specifically, for each simulation year we
use the prior 250 daily continuously compounded stock market re-
turns in order to estimate the realized stock market volatility. This
rolling volatility is used as a proxy for the expected stock market
volatility in the synthetic put strategy. The simulation results
shown in Appendix B support our conclusions. A synthetic put
strategy implemented with volatility estimates from rolling win-
dows prior to the portfolio formation date dominates all other
benchmark strategies in terms of its cumulative prospect value
(e.g., a cumulative prospect value of 4.22 for the synthetic put
strategy compared to 3.81 for the money market investment).
Overall, our results suggest that errors in the estimation of stock
return volatility do not have a large negative impact on the cumu-
lative prospect value of a synthetic put strategy.
5. Practical issues: the design of portfolio insurance products

In this section, we analyze the question how portfolio insur-
ance products should be designed and structured in order to
meet a prospect theory investor’s preferences as accurately as
possible (Shefrin and Statman, 1993; Breuer and Perst, 2007;
Breuer et al., 2009). An important feature of a portfolio insurance
strategy is the optimal protection level (e.g., a protection level of
100%, 95% or 90% of the wealth). Moreover, within a CPPI or a
TIPP strategy the multiplier m – the parameter which deter-
mines the aggressiveness of a strategy – needs to be determined.
We examine both choices based on using our historical simula-
tion approach.
5.1. Choosing the level of protection

While the 95% and the 90% protection variants of a portfolio
insurance strategy only provide a reduced downside protection
compared to the 100% protection base case version, one would ex-
pect higher returns from these strategies. Although this risk-re-
turn trade-off may be appropriate in a standard asset pricing
context, it is not obvious ex ante if the higher return potential
of a protection strategy with a lower floor can offset the reduced
downside protection for a prospect theory investor. We run addi-
tional historical simulations, in which we analyze the portfolio
insurance strategies with protection levels of 95% and 90%. The re-
sults are shown in Table 8. The corresponding values for a protec-
tion level of 100% are reported in Panel A of Table 6. As one would
expect, the mean return of all protection strategies increases
when the floor is reduced. For example, the mean return of the
CPPI strategy increases from 6.18% to 8.01% per year when the
protection level is reduced from 100% to 95%. A further reduction
to a protection level of 90% induces an additional increase of the
mean return to 9.46% per year. At the same time, one observes
an increase in volatility when the protection level is reduced.
For the CPPI strategy, the annual volatility increases from 6.57%
(with a protection level of 100%) to 17.10% (with a protection le-
vel of 90%). Most important, however, a lower protection level



Table 8
Portfolio insurance strategies and the impact of the protection level.

CPPI TIPP Stop-loss Synthetic put Stock market Cash 50:50 B&H

Panel A: Protection level = 95%
Mean return p.a. (%) 8.01 6.16 10.72 9.30 10.62 5.15 7.89
Volatility p.a. (%) 12.36 6.95 20.30 15.31 24.36 2.50 12.12
Sharpe-ratio 0.23 0.15 0.27 0.27 0.22 0.00 0.23
Mean prospect value (k = 1.0) 5.50 4.57 6.65 6.19 6.93 4.18 5.59
Mean prospect value (k = 2.25) 4.40 3.95 3.54 4.23 2.22 4.18 3.68
Cumulative prospect value 3.95 2.77 3.25 3.11 �2.05 3.91 0.95

Panel B: Protection level = 90%
Mean return p.a. (%) 9.46 7.21 11.04 9.78 10.62 5.15 7.89
Volatility p.a. (%) 17.10 11.14 21.37 18.36 24.37 2.50 12.12
Sharpe-ratio 0.25 0.18 0.28 0.25 0.22 0.00 0.23
Mean prospect value (k = 1.0) 6.16 5.04 6.99 6.40 6.93 4.18 5.59
Mean prospect value (k = 2.25) 3.83 3.49 3.22 3.35 2.22 4.18 3.68
Cumulative prospect value 3.11 2.10 2.14 1.75 �2.05 3.91 0.95

This table shows the results from historical simulations for portfolio insurance strategies and the impact of different protection levels. Rather than full (100%) protection,
Panel A uses a floor of 95% and Panel B a floor of 90%. The results are based on the daily returns of the German stock and money markets over the sample period from January
1980 to October 2009. We use 250 subsequently following daily returns on a rolling windows basis (moving the window forward by one day) and implement the different
investment strategies. Our rolling windows simulation approach delivers 7529 overlapping yearly returns for the portfolio insurance strategies and three benchmark
investment strategies (a passive stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy (50:50 B&H) without monthly rebalancing). The
portfolio insurance strategies are implemented with 10 basis points round-trip transaction costs, a trading filter of 2%, and a protection level of 100%. As discussed in
Section 4.2, statistical hypothesis tests are complicated by dependence.

Table 9
CPPI strategy and the impact of the multiplier.

CPPI CPPI CPPI CPPI Stock market Cash 50:50 B&H
m = 3 m = 5 m = 7 m = 10

Mean return p.a. (%) 5.65 6.18 6.83 7.39 10.62 5.15 7.89
Volatility p.a. (%) 3.99 6.57 9.42 12.30 24.36 2.50 12.12
Sharpe-ratio 0.13 0.16 0.18 0.18 0.22 0.00 0.23
Mean prospect value (k = 1.0) 4.46 4.70 4.97 5.12 6.93 4.18 5.59
Mean prospect value (k = 2.25) 4.44 4.65 4.88 4.87 2.22 4.18 3.68
Cumulative prospect value 3.86 4.41 4.97 5.18 �2.05 3.91 0.95

This table shows the results from historical simulations for the CPPI strategy and the impact of the multiplier (m). The results are based on the daily returns of the German
stock and money markets over the sample period from January 1980 to October 2009. We use 250 subsequently following daily returns on a rolling windows basis (moving
the window forward by one day) and implement the CPPI strategy. Our rolling windows simulation approach delivers 7529 overlapping yearly returns for the CPPI strategy
and three benchmark investment strategies (a passive stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy (50:50 B&H) without monthly
rebalancing). The multiplier determines the level of aggressiveness; it varies between m = 3 and m = 10. The CPPI strategy is implemented with 10 basis points round-trip
transaction costs, a trading filter of 2%, and a protection level of 100%. As discussed in Section 4.2, statistical hypothesis tests are complicated by dependence.
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leads to a reduction in the cumulative prospect value. This result
is observable for all four portfolio insurance strategies. The de-
crease in the cumulative prospect value is especially pronounced
for a protection level of 90%. In this case, all four insurance strat-
egies have lower cumulative prospect values than the money
market investment. Presumably, any losses that cannot be recov-
ered within a one year investment horizon are heavily weighted,
which then leads to low cumulative prospect values. This observa-
tion should be kept in mind when designing financial products
with a capital guarantee. For a prospect theory investor it seems
more beneficial to structure an investment product that avoids
losses as good as possible even if the return potential of such a
strategy is dominated by other strategies.
5.2. Choosing the level of aggressiveness in a CPPI strategy

In addition to the floor, the financial engineer must choose the
multiplier m for the CPPI strategy.22 Ceteris paribus, a higher
22 This choice is also necessary for the TIPP strategy. However, our previous results
indicate that the CPPI strategy is more preferable for a prospect theory investor than
the TIPP strategy. For this reason, we analyze the effects of variations in the multiplier
within the CPPI strategy.
multiplier m leads to higher stock market allocations, and hence
it presumably provides should provide a higher return potential.
However, a higher multiplier m also increases the gap or overnight
risk. Therefore, we analyze the attractiveness of CPPI strategies that
are implemented using various multipliers m for a prospect theory
investor. We change our base case multiplier m = 5 into m = 3,
m = 7, and m = 10 and compare the resulting cumulative prospect
values. The results are shown in Table 9. As one would expect, an
increasing multiplier m leads to a higher mean return, but also to
a higher volatility. Most important, looking at the cumulative pros-
pect values, we observe that an increasing multiplier m leads to a
systematic increase in the cumulative prospect values. The CPPI
strategy with m = 3 exhibits the lowest cumulative prospect value
(3.86), and the CPPI strategy with m = 10 boasts the highest one
(5.18); compared to our base case with m = 5, the more aggressive
CPPI strategies with m = 7 and m = 10 seem more attractive for a
prospect theory investor. However, this is not a general result be-
cause a higher multiplier m also causes a higher gap risk. With a
multiplier of m = 10 an overnight loss larger than �10% cannot be
covered by the CPPI strategy. Although daily losses of this magni-
tude are extremely rare, a look into the past reveals that they are
not impossible (e.g., loss of the German stock market index DAX
of �12.80% on 16 October 1989). This observation has another
important implication for commercial applications of CPPI strate-
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gies. In a first step, the maximum tolerable gap or overnight risk
must be determined. In a second step, conditional on this gap risk,
the highest possible multiplier should be chosen. Put in other
words, once the maximum multiplier has been determined accord-
ing to the acceptable gap or overnight risk, the financial engineer
should not select a lower multiplier at least when an investor’s
preferences are described by cumulative prospect theory.
6. Conclusions

This paper addresses the question why investors often prefer
portfolio insurance strategies or guaranteed financial products
against other investment strategies. This observation is surprising
given that previous studies document that portfolio insurance is
hardly optimal in the standard expected utility framework. Our
hypothesis is that the popularity of investment strategies with
downside protection can be justified in a behavioral finance con-
text. We run Monte Carlo simulations and historical simulations,
implement various popular protection strategies together with
simple benchmark strategies, and evaluate the outcomes within
the framework of cumulative prospect theory. Our results reveal
that the standard protection strategies stop-loss, synthetic put,
and constant proportion portfolio insurance (CPPI) with a protec-
tion level of 100% significantly dominate all benchmark strategies
in terms of their cumulative prospect values. However, this result
is not observable for the time invariant portfolio protection (TIPP)
strategy. In contrast to the other portfolio insurance strategies, the
TIPP strategy attempts not only to protect the initial level of
wealth, but all interim capital gains as well. This additional pro-
tection implies higher opportunity costs in terms of a reduced
Appendix A. Cumulative prospect values of alternative stock-mone

CPPI TIPP

Panel A: Expected return = 9%, volatility = 20%
Average stock market allocation (%) 23 10
Cumulative prospect value 3.18⁄⁄ 3.64

Panel B: Expected return = 11.5%, volatility = 20%
Average stock market allocation (%) 24 10
Cumulative prospect value 3.64⁄⁄ 3.83

Panel C: Expected return = 9%, volatility = 30%
Average stock market allocation (%) 21 8
Cumulative prospect value 2.68⁄⁄ 3.57

Panel D: Expected return = 11.5%, volatility = 30%
Average stock market allocation (%) 23 8
Cumulative prospect value 3.00⁄⁄ 3.71

This table shows the results from our base case Monte Carlo simulations for alterna
market returns are generated using a Geometric Brownian motion. The assumptions fo
four stock market scenarios presented in Table 1. The risk-free rate is fixed at 4.5%. W
strategies with a fixed stock-money market allocation without monthly rebalancing. T
position, where the fixed weight x denotes the strategy- and scenario-specific average s
in order to derive the full distribution of prospect values for the additional benchmar
with the highest cumulative prospect value). The null hypothesis in the paired t-test
equal to that of the money market investment.
⁄ The test statistic is significant at the 5% level.
⁄⁄ The test statistic is significant at the 1% level.
participation in upward stock market movements. Our simulation
results support this hypothesis; the TIPP strategy is dominated by
a money market investment in terms of their cumulative prospect
values. Our results hold for the Monte Carlo simulation and the
historical simulation analyses, and they are robust against several
parameter variations (e.g., alternative risk-free rates and alterna-
tive probability weighting parameters). Moreover, a practical
application of the synthetic put strategy requires estimating the
future stock market volatility. Our simulation results reveal that
volatility estimation errors do not exert a large negative impact
on the cumulative prospect values. Overall, our findings are robust
and indicate that the traditional portfolio insurance strategies
stop-loss, synthetic put, and CPPI are the preferable investment
strategies for prospect theory investors.

Finally, our analysis provides several insights on how a capi-
tal guaranteed financial product should be designed and struc-
tured in practice in order to meet an investor’s preferences as
accurately as possible. In spite of the lower return potential, a
higher protection level seems more desirable for prospect theory
investors than a lower one. Moreover, a CPPI strategy should be
implemented as aggressively as possible, with the multiplier
being determined based on the maximum tolerable gap or over-
night risk.
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y market benchmark strategies

Stop-loss Synthetic put Cash

39 40 –
⁄⁄ 2.46⁄⁄ 2.42⁄⁄ 3.76

43 43 –
⁄⁄ 3.22⁄⁄ 3.22⁄⁄ 3.76

28 30 –
⁄⁄ 2.14⁄⁄ 1.98⁄⁄ 3.76

30 32 –
⁄ 2.61⁄⁄ 2.50⁄⁄ 3.76

tive stock-money market benchmark strategies. Continuously compounded stock
r expected returns and standard deviations in Panels A and B are taken from the
e simulate 250 daily stock market returns and construct alternative benchmark

hese mixed strategies consist of a x% stock market allocation and a (1 � x%) cash
tock market allocation (shown in the table). We perform 100,000 simulation runs

k strategies and the money market investment (which is the benchmark strategy
is that the cumulative prospect value of a mixed stock-money market strategy is



Appendix B. Synthetic put strategy with time-varying volatility

Synthetic put Stock market Cash 50:50 B&H

Volatility estimation Time-varying – – –
Mean return p.a. (%) 7.96 10.99 4.96 7.98
Volatility p.a. (%) 10.86 24.69 2.33 12.31
Sharpe-ratio 0.28 0.24 0.00 0.25
Mean prospect value (k = 1.0) 5.61 7.17 4.05 5.64
Mean prospect value (k = 2.25) 5.00 2.35 4.05 3.66
Cumulative prospect value 4.22 �2.03 3.81 0.90

This table shows the results from historical simulations for the synthetic put strategy with time-varying volatility estimates. The results are based on the daily returns of the
German stock and money markets over the sample period from January 1980 to October 2009. We use 250 subsequently following daily returns on a rolling windows basis
(moving the window forward by one day) and implement the synthetic put strategy starting in mid December 1980 (the first 250 daily return data are required for volatility
estimation). Our rolling windows simulation approach delivers 7279 overlapping yearly returns for the synthetic put strategy and three benchmark investment strategies (a
passive stock market fund, a money market fund (cash), and a balanced buy-and-hold strategy (50:50 B&H) without monthly rebalancing). For each simulation year we use
the prior 250 daily continuously compounded stock market returns in order to estimate the realized stock market volatility; this rolling volatility is used as a proxy for the
expected stock market volatility. The synthetic put strategy is implemented with 10 basis points round-trip transaction costs, a trading filter of 2%, and a protection level of
100%. As discussed in Section 4.2, statistical hypothesis tests are complicated by dependence.
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